
COMP10062: Assignment 7
© Sam Scott, Mohawk College, 2024

The Assignment
This assignment is about polymorphism, abstract classes, and interfaces. The UML class diagram below
shows an arrangement of classes with inheritance, association, and implementation relationships
between them. Your job is to implement the classes and relationships shown here.

Description and Notes
The classes in the diagram represent products that are available at Tim’s Hardware Store. Some of them
are Rentable and some are not. Each one is a TimsProduct and a Commodity. You must add one
Rentable product and one that is not Rentable.

Also represented is TimsOrder. This class has an array that contains 1 or more TimsProducts,
representing a named customer’s order. The + on the association arrow means “1 or more”.

The rent, isRented, and return methods
These methods are used for checking a rentable tool out, checking whether it is currently rented, and
returning it. In the RentableHardware abstract class, these methods all manipulate the boolean variable
rented.

Constructors vs. Create Methods
Notice that many of the constructors are private. The classes with private constructors have static
create methods. Instead of calling a constructor, call the create method, like this:

 BoxOfNails b = BoxOfNails.create();

This method will have a dialog with the user to collect information about the object (in this case then
name, cost, and price of the product as well as the size of the nails and the quantity of nails in the box),
and will then create and return an object by calling the private constructor. When you add your two new
products, you should follow this same design pattern.1

For rentable products, you should ask the user whether the customer will be renting or buying the
product. If they are renting, you should call the rent method.

The TimsOrder class also uses a create method. This method asks the user their name and how many
products they want, then creates a TimsOrder object by calling its private constructor. Then for each
item in the array, it asks what type the customer wants (BoxOfNails, NailGun or one of the other two
types you will add), then calls the appropriate create method and stores the result in the array.

Model vs. View
Note that because the create methods are talking to the user, this assignment does not maintain the
standard model/view separation. However, you can think of the static methods as implementing the
view, and the instance methods and variables as implementing the model.

The getAmountDue Method
The getAmountDue method adds up all the retail prices of the products in the order (or rental prices if
rented is true for a product) and returns the sum. The toString method returns a String with the name
of the customer and the toString values of all the products in the order, something like this:

Order for: Sam Scott

TimsProduct{name="Finishing Nails", cost=2.34, price=5.99}

 Type... BoxOfNails{size=1.5, quantity=50}

TimsProduct{name="Pneumatic Nail Gun", cost=98.32, price=199.99}

 Type... RentableHardware{rentalCost=19.99, rented=true}

 Type... NailGun{features="8 nails per second"}

Notice that the BoxOfNails and NailGun toString methods are incorporating the TimsProduct and
RentableHardware toString methods. You should do this as well, but feel free to make your output look
nicer than this!

1 This is known in software engineering as the Factory Design Pattern. The create methods are called static factory
methods. The Java FX Color class uses static factory methods for creating colors (rgb, web, etc.). Each of these
methods interprets its arguments and then calls a Color constructor and returns the result.

TestClass.java
Use the code below to test your classes. This short program should initiate an elaborate dialog with the
customer through calls to the create methods, then output the order and the total, rounded to two
decimal places. You should be able to use this code without changing it.

public class TestClass {

 public static void main(String[] args) {

 TimsOrder t = TimsOrder.create();

 System.out.println(t);

 System.out.printf("Total Price: $%.2f\n", t.getAmountDue());

 }

}

Advice
1. Go top down. Start with the highest interfaces and classes and work downwards.
2. Make instance variables, and easy methods. For the more complicated methods, just write

“stubs” for now.
3. A method stub is an empty method. You make this first and fill in the details later. An example

of a method stub for TimsOrder.create is shown below.
4. Once you have the entire structure created like this, you can start filling in the details of each

method.

 public static TimsOrder create() {

 // TODO: Fill in this stub to have a dialog with the user

 //and create a TimsOrder.

 return null;

 }

Hint
In the TimsOrder.create method, create the TimsOrder object as soon as you know many products are
required, then you can access the private array of products directly. This is allowed because the create
method is inside the TimsOrder class.

Handing In
See instructions on MyCanvas for submission.

Make sure you follow the Documentation Standards for the course.

Evaluation
Your assignment will be evaluated for performance (40%), structure (40%), and documentation (20%)
using the rubric in the Canvas.

