
2024-03-25

1

Catching Exceptions
v103

by Dave Slemon, Mohawk College

Java Program Error Types

• Syntax Errors - program won’t compile until these errors
are resolved

• Logic Errors (i.e. semantic errors) - program runs but output
is not correct. (harder to track down these errors)

• Run-time Errors - errors that crash the program.
This is where CATCHING EXCEPTIONS comes in.

2024-03-25

2

Checked and Unchecked Exceptions
In Java, exceptions are categorized into two types: checked exceptions and unchecked
exceptions. The distinction lies in how these exceptions are handled by the Java compiler
and at runtime.

Checked exceptions are exceptions that the Java compiler requires the developer to handle
explicitly using try-catch blocks

or

declare them in the method signature using the "throws" keyword. If a method throws a
checked exception, the calling code must either catch the exception or propagate it further
up the call stack.

public static void pause(int fps) throws InterruptedException {
}

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

public class CheckedExceptionExample {

public static void main(String[] args) {
try {

readFromFile("nonexistent.txt");
} catch (IOException e) {

System.out.println("Error occurred while reading the file: " + e.getMessage());
}

}

public static void readFromFile(String filename) throws IOException {
BufferedReader reader = new BufferedReader(new FileReader(filename));
String line;
while ((line = reader.readLine()) != null) {

System.out.println(line);
}
reader.close();

}
}

Checked Exception Example

Main program is dealing gracefully with this checked exception.
(possible error: the file may not exist)

The readFromFile method throws the compulsory responsibility of
dealing with a possible checked exception to the calling program,
i.e. the main() program

2024-03-25

3

Examples of Checked Exceptions

IOException: This exception is thrown when there is an error during input/output operations, such as reading or writing data to
files or streams.

import java.io.*;
public class FileHandler {

public void readFile(String fileName) throws IOException {
BufferedReader reader = new BufferedReader(new FileReader(fileName));
// ...

}
}

InterruptedException: This exception is thrown when a thread is interrupted while it is waiting, sleeping, or otherwise occupied.

public class MyRunnable implements Runnable {
public void run() {

try {
// Some time-consuming operation
Thread.sleep(1000);

} catch (InterruptedException e) {
// Handle the interruption

}
}

}

Examples of Checked Exceptions

ClassNotFoundException: This exception is thrown when attempting to load a class dynamically at runtime, but the class cannot be
found.

public class ClassLoaderExample {
public void loadClass(String className) throws ClassNotFoundException {

Class<?> myClass = Class.forName(className);
// ...

}
}

Checked exceptions are used for scenarios where exceptional conditions
can be anticipated and handled explicitly in the code, promoting more
robust error handling and improving code reliability. When a method
throws a checked exception, the calling code must either catch the
exception or propagate it (declare it using throws in its method signature).

2024-03-25

4

Unchecked exceptions (also known as runtime exceptions) do not need
to be explicitly handled using try-catch blocks or declared in the method
signature. They can be caught if desired, but it is not mandatory. These
exceptions usually represent programming errors or unexpected
conditions that occur during the execution of a program.

Unchecked Exceptions

Examples of Unchecked Exceptions

NullPointerException: Occurs when you attempt to perform an operation on an object reference that points to null.

String str = null;
int length = str.length(); // This will throw a NullPointerException.

Examples of Unchecked Exceptions

IllegalArgumentException: Occurs when an inappropriate argument is passed to a method.

public void printAge(int age) {
if (age < 0) {

throw new IllegalArgumentException("Age cannot be negative.");
}
System.out.println("Age: " + age);

}

NumberFormatException: Occurs when attempting to convert a string to a numeric type, but the string does not have the appropriate
format.

String strNumber = "abc";
int number = Integer.parseInt(strNumber); // This will throw a NumberFormatException.

2024-03-25

5

Examples of Unchecked Exceptions

UnsupportedOperationException: Occurs when an unsupported operation is called.

List<String> immutableList = List.of("A", "B", "C");
immutableList.add("D"); // This will throw an UnsupportedOperationException.

Remember that unchecked exceptions are usually caused by
programming errors or unexpected conditions that may not be
recoverable during runtime. Handling these exceptions properly in
your code is essential to ensure robustness and graceful degradation in
exceptional scenarios.

Examples of Unchecked Exceptions

ArrayIndexOutOfBoundsException: Occurs when you try to access an array element using an index that is outside the
valid range of the array.

int[] numbers = {1, 2, 3};
int value = numbers[5]; // This will throw an ArrayIndexOutOfBoundsException.

. ArithmeticException: Occurs when an arithmetic operation results in an error, such as division by zero.

int result = 10 / 0; // This will throw an ArithmeticException.

ClassCastException: Occurs when an attempt is made to cast an object to a type that it is not compatible with.

Object obj = "Hello";
Integer num = (Integer) obj; // This will throw a ClassCastException.

2024-03-25

6

/**
* Pauses the program based on how many frames per second the user wants.
* For example, if they want 20 frames per second, the pause time should be
* 1000/20 = 50 ms.
*
* @param fps Number of frames per second
* @throws java.lang.InterruptedException
*/
public static void pause(int fps) throws InterruptedException {

int pauseTime = 1000 / fps;
Thread.sleep(pauseTime);
System.out.println("Paused for " + pauseTime + " ms.");

}

Study this method below, what do you observe?
1. The pause method might generate an InterruptedException, (i.e. a checked exception which MUST be dealt
with) but instead of pause dealing with the error, it throws that responsibility to any calling program which calls pause.

2. Division by 0 might occur, which is an
unchecked ArithmeticException

public class Except1 {
/**
* Pauses the program based on how many frames per second the user wants.
* For example, if they want 20 frames per second, the pause time should be
* 1000/20 = 50 ms.
*
* @param fps Number of frames per second
* @throws java.lang.InterruptedException
*/

public static void pause(int fps) throws InterruptedException {
int pauseTime = 1000 / fps;
Thread.sleep(pauseTime);
System.out.println("Paused for " + pauseTime + " ms.");

}

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("How many frames per second?");
int framesPerSecond = sc.nextInt();
pause(framesPerSecond);

}
}

What do we need to
do with this code?

2024-03-25

7

public class Except1 {
/**
* Pauses the program based on how many frames per second the user wants.
* For example, if they want 20 frames per second, the pause time should be
* 1000/20 = 50 ms.
* @param fps Number of frames per second
* @throws java.lang.InterruptedException
*/

public static void pause(int fps) throws InterruptedException {
int pauseTime = 1000 / fps;
Thread.sleep(pauseTime);
System.out.println("Paused for " + pauseTime + " ms.");

}
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
System.out.println("How many frames per second?");
int framesPerSecond = sc.nextInt();
try {

pause(framesPerSecond);
} catch (InterruptedException e) {

System.out.println("Error occurred: “ + e.getMessage());
}

}
}

public class Except1 {
public static void pause(int fps) throws InterruptedException {

int pauseTime = 1000 / fps;
Thread.sleep(pauseTime);
System.out.println("Paused for " + pauseTime + " ms.");

}
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
System.out.println("How many frames per second?");
try {

int framesPerSecond = sc.nextInt();
pause(framesPerSecond);

}
catch (InterruptedException e) {

System.out.println("Error occurred: “ + e.getMessage()); }

}}

What 4 other unchecked
exceptions might occur?

InputMismatchException
Error: please supply an integer

IllegalArgumentException
Error: must be a positive integer

ArithmeticException
Error: integer must be > 0,

Exception
Error: unknown, please try again

catch (InputMismatchException e) {
System.out.println("Error: please supply an integer");
sc.next(); }

catch (IllegalArgumentException e) {
System.out.println("Error: must be a positive integer, please try again"); }

catch (ArithmeticException e) {
System.out.println("Error: integer must be > 0”); }

catch (Exception e) {
System.out.println("Error: unknown, please try again "); }

2024-03-25

8

public class Except1 {
public static void pause(int fps) throws InterruptedException {

int pauseTime = 1000 / fps;
Thread.sleep(pauseTime);
System.out.println("Paused for " + pauseTime + " ms.");

}
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
System.out.println("How many frames per second?");
try {

int framesPerSecond = sc.nextInt();
pause(framesPerSecond);

}
catch (InterruptedException e) {

System.out.println("Error occurred: “ + e.getMessage()); }

}}

catch (InputMismatchException e) {
System.out.println("Error: please supply an integer");
sc.next(); }

catch (IllegalArgumentException e) {
System.out.println("Error: must be a positive integer, please try again"); }

catch (ArithmeticException e) {
System.out.println("Error: integer must be > 0”); }

catch (Exception e) {
System.out.println("Error: unknown, please try again "); }

When a method throws a checked exception, any
calling method (in this case, the main method) is
aware of this possibility and must either catch the
exception or declare that it may propagate it
further.

In the main method, we are catching the
unchecked ArithmeticException using the catch
block, which allows us to handle the exception
gracefully by displaying an error message to the
user and giving them a chance to try again.

Keep in mind that if a method throws an
unchecked exception (subclass of
RuntimeException), you don't need to declare it in
the throws clause.

Unchecked exceptions do not need to be caught
or declared explicitly, which is different from
checked exceptions.

Practice Test
Question.

Write code to accept an integer
input from the keyboard using a
Scanner called input .

The input should be stored in a
new variable called number. If the
user enters something that is not
an integer, the variable number
should be assigned the value -999.

NB: uncheck exception:
InputMismatchException

public class ExceptionDemo {
public static void main(String[] args) {

Scanner input = new Scanner(System.in);
int number ;

try{
System.out.print("Enter an integer: ");
number = input.nextInt();

System.out.println("The number entered is " + number);

}
catch (InputMismatchException ex) {

System.out.println("Try again. (" +
"Incorrect input: an integer is required)");

number = -999;
input.nextLine(); //to clear the line

}
input.nextLine(); //to clear the line

} //main
}

2024-03-25

9

public class InputMismatchExceptionDemo {
public static void main(String[] args) {

Scanner input = new Scanner(System.in);
boolean continueInput = true;
int number ;

do {
try{

System.out.print("Enter an integer: ");
number = input.nextInt();

System.out.println("The number entered is " + number);

continueInput = false;
}
catch (InputMismatchException ex) {

System.out.println("Try again. (" +
"Incorrect input: an integer is required)");

number = -999;
input.nextLine(); //to clear the line

}
} while (continueInput);
input.nextLine(); //to clear the line

} //main
}

