
UML Class Diagram Style Guide
Sam Scott, COMP 10062, Mohawk College, May 2018

0. What is this?
The UML style we have adopted for this course is a mixture of standard and non-standard elements, and
it is not quite the same as the style used in the textbook. When in doubt, use this guide to create UML
class diagrams for your assignments.

UML diagrams can be neatly hand drawn and scanned, or created with UMLet (http://umlet.com/) or
draw.io(https://draw.io/). If you want to use a different piece of software, you must clear it with your
instructor first.

1. Basic Class Diagrams (Weeks 3 – 4)
A class diagram specifies the instance variables and method signatures contained in the class. All
variable types, parameter types, and return types.

Access
Every method and instance variable should be marked + for public or – for private.

Types
Use standard Java primitive type names (int, double, boolean, char, long, etc.) and commonly
used class names (String, Date, Scanner, etc.)

Parameters
You can show the name and type for each parameter, or if you think it is clear what the parameters are
for, you can just list their types, as in the methodNoVarNames method in the diagram above.

Return Types
Constructors and methods of type void don’t need to have a return type listed (see
publicVoidMethod above).

Static
Static variables and methods are underlined. Instance variables and methods are not.

Name of the Class

Attributes (Instance Variables)

Behaviours (Methods)

http://umlet.com/
https://draw.io/

Association (Weeks 4 – 7)
Association (or “has a”) relationships are shown with an open-headed arrow, as in the diagrams below.
Association arrows represent private instance variables.

Simple Association

The above diagram shows that an Owner has exactly one Pet. This means that the Owner class
contains a private instance variable of type Pet, even though this is not shown in the individual class
diagram for Owner.

Note that there is one Owner constructor that does not accept a Pet parameter. This constructor will
have to create a Pet object to satisfy the association relationship.

Multiple Association

The association arrow above has a multiplicity attached to it. It shows that every Owner object has 0, 1,
or 2 Pet objects associated with it. This might mean that Owner contains 2 private instance variables of
type Pet, or it might mean that Owner contains a private instance variable type Pet[].

The association arrow above has a multiplicity of *. The * operator is known as the Kleene Star
(https://en.wikipedia.org/wiki/Kleene_star). It means “zero or more”. This probably means that Owner
contains a instance variable of type Pet[] or of type ArrayList<Pet> (see weeks 11 and 12).

https://en.wikipedia.org/wiki/Kleene_star

Inheritance (Weeks 8 – 9)
Inheritance (or “is a”) relationships are shown with a triangular arrow head. This arrow means that one
class extends a class or implements an interface.

Basic Inheritance

In the diagram above, the classes Budgie and Goldfish both extend or inherit from the Pet class.

Abstract Classes and Interfaces

In the diagram above, the italics on the name Pet indicate that this is an abstract class. The italics on
the locomotion method show that it is an abstract method which both Budgie and Goldfish
must override.

The italics and the tag <<interface>> show that WaterDweller is not a class, but an interface. The
dashed inheritance arrow shows that Goldfish implements the WaterDweller interface. This
means that it must override breathingMethod and saltWater.

	0. What is this?
	1. Basic Class Diagrams (Weeks 3 – 4)
	Access
	Types
	Parameters
	Return Types
	Static

	Association (Weeks 4 – 7)
	Simple Association
	Multiple Association

	Inheritance (Weeks 8 – 9)
	Basic Inheritance
	Abstract Classes and Interfaces

