
COMP10062: Week 11 Guide
Sam Scott, Mohawk College, 2022

0 Reading for this Week
For this week, you should read sections 9.1, 9.3 (just pp. 700-702), 9.4 (just pp. 729-732) and 12.1.

1. Catching Exceptions (Read section 9.1 and pp. 700-702)

There are three basic kinds of errors…

1. Syntax Error: Error that prevents compilation.

2. Run-time Error: Program compiles, but execution halts unexpectedly.

3. Logic Error: Program compiles and runs to completion, but does something unexpected or

wrong due to bad logic in the code.

Exceptions are a special kind of run-time error that can be handled gracefully by the programmer.

Exceptions are objects in Java.

Exceptions are thrown by the method that gave rise to the error. The calling method can throw it
onwards to its calling method, or it can catch it and handle it.

Exception Thrown
An exception causes the current method to halt immediately and “throw” the exception to the method
that called it.

public static int getInput(int max) {

 Scanner sc = new Scanner(System.in);

 int x = 0;

 do {

 System.out.println("Enter an int no greater than " + max);

 x = sc.nextInt(); // might throw an exception

 } while (x > max);

 return x;

}

If the main method throws an exception, the program terminates and the JRE will print its stack trace
to a special error stream (System.err).

public static void main(String[] args) {

 int x = getInput(100); // might throw an exception

 System.out.println(x);

}

See Except1.java on Canvas for the code from this example.

Catching an Exception
If you don’t want the program to halt, you can catch an exception using a try…catch statement. Wrap
the lines of code that might throw the exception in the try block, and then add a catch block, as
shown below.

 // some code goes here

try {

 // code that might throw an exception goes here

 } catch (Exception e) {

 // code that handles the error here

 }

 // no matter what happens above, execution will continue here

If any exception happens in the try block above, it stops executing immediately and control jumps to
the catch block. When the catch block finishes, the code will continue.

A catch block is like a method with a single parameter for an Exception object.

Every Exception object contains a stack trace to show where the exception happened and a String
message that provides more information about what went wrong. Use .printStackTrace() to

dump the stack trace to standard output. Use .getMessage()to retrieve the message.

Example: Multiple Catch Blocks
The try block below contains 3 lines of code. Each could throw a different type of exception. The try
block is followed by a catch block for each exception type. See Except2.java on Canvas.

 public static void main(String[] args) {

 Scanner sc = new Scanner(System.in);

 try {

 Thread.sleep(1000);

 int x = sc.nextInt();

 System.out.println("The inverse of " + x + " is " + 1 / x);

 }

 catch (InterruptedException e) {

 System.out.println("Caught an exception!");

 }

 catch (InputMismatchException e) {

 System.out.println("Bad input! " + sc.next());

 }

 catch (ArithmeticException e) {

 System.out.println("Zero has no inverse (Error message: '"

 + e.getMessage() + '").");

 }

 System.out.println("Done. Goodbye!");

 }

If an exception happens in the try block, control will jump to
the catch blocks. They will be checked in order until one is
found that matches the type of Exception thrown. Then the
first matching catch block (and only that one) will get
executed.

The UML diagram at right shows the hierarchy of Exception
classes. From this, you can see that if you want to catch any
exception, use catch(Exception e).

InputMismatchException: Important Note
When you catch an InputMismatchException,
the Scanner leaves the token that caused the error
in its buffer. So the next time you call
sc.nextInt(), you’ll get the same exception. The

code above calls sc.next() to remove the
offending token from the buffer and report it to the
user.

Checked and Unchecked Exceptions (pp. 700-702)
Exceptions that extend RuntimeException are unchecked exceptions.

Exceptions that extend Exception directly are checked exceptions. Examples include

InterruptedException and FileNotFoundException.

If your code calls a method that might throw a checked exception, you must satisfy the Catch or Specify
Requirement (or get a Syntax Error). This means that you must either catch it or specify in the method
header that you will throw it.

To specify, add a throws declaration, as shown in the example below.

 public static void main(String[] args) throws InterruptedException {

 Thread.sleep(1000);

 }

2. Throwing Exceptions (Read section 9.1)

Sometimes it makes sense to create and throw an exception from a method. It’s a generic way of
aborting a method when something goes wrong. Throwing an exception increases the reusability of the
code because it leaves it up to the application programmer to decide what to do when an error
happens.

Throwing an Exception
The Scanner method nextInt()throws an InputMismatchException if the user types
something that is not an integer. The InputMismatchException is an object that is created in the
nextInt() method and then thrown with the throw keyword, maybe like this:

 InputMismatchException e = new InputMismatchException();

 throw e;

Or maybe like this:

 throw new InputMismatchException();

The throw statement is a bit like return. Execution halts immediately and control returns to the
calllng method. If the exception is not caught, it gets thrown again from that point.

Which Exceptions Should You Throw
You can create and throw an exception of any type (or you can create your own exception types as we
shall see) but the one type you will probably use most is IllegalArgumentException.

Whenever a user calls a method of yours and there is something wrong with one of the arguments
passed to your parameters, you can throw one of these.

 if (x < 0)

throw new IllegalArgumentException();

It’s always a good idea to provide a message as well, which you can do by using a different constructor:

 if (x < 0)

throw new IllegalArgumentException("X must be positive.");

If this exception object is caught, you can access the message it was created with using its
getMessage() method.

3. Lists in Java (Read Section 12.1)
Arrays are useful for storing sequences of primitive values and objects, but you have to specify a fixed
size in advance and it is difficult to insert and remove values.

Lists are like arrays, but they grow and shrink as necessary and have insertion and removal methods
already written. The price is that, depending on the implementation, Lists can be a little slower than
arrays and use a little more storage than arrays. But for most applications you won’t notice much
difference.

The most common type of List in Java is the ArrayList, which gets its name from the fact that
under the hood, the list of items is stored in an array.

Declaring an ArrayList
ArrayLists are “generic” classes. Generic classes are associated with other classes, but you get to
specify which classes they are associated with when you instantiate them. You do this by including the
names of the associated classes inside angle brackets ("<" and ">").

Generically, we use E to stand for any possible class. So the Array List type in Java is usually written

ArrayList<E>.

Here’s a declaration for an ArrayList<E> variable, specifying that String objects will be stored. In
other words, type E is String. You will need to import java.util.ArrayList for this to work.

 ArrayList<String> a;  a is null at this point

Creating ArrayLists
 a = new ArrayList<>();  This creates an empty ArrayList<String> object
 System.out.println(a.size());  will print 0 to the console (size = length)

Initializing ArrayLists
Unlike arrays, you don’t have to set up an initial value for every element in the list because initially,
there are no elements in the list.

Adding and Inserting elements
a.add("pascal");  adds an element to the end of the list
a.add(1, "basic");  inserts an element as index 1. Can throw an exception

Removing elements
a.remove(1);  removes the element at index 1

Accessing Objects in an ArrayList
a.get(2);  Just like a[2] for an array. Can throw an exception.

Processing ArrayLists
 for (int i=0; i<a.size(); i++)  use an index

 System.out.println(a.get(i));

for (String e: a)  use an enhanced for loop
 System.out.println(e);

ArrayLists, Wrappers and Autoboxing
ArrayList<E> objects have to store object types. E cannot be a primitive type like int or double.

But every primitive type comes with a wrapper class you can use instead. They’re called wrapper classes
because their objects store single primitive values. The primitive is the value, the object is the wrapping.

ArrayList<int> b = new ArrayList<>();  this doesn’t work!
ArrayList<Integer> b = new ArrayList<>();  this is ok!

Here’s the list of all eight wrapper classes.

Primitives: byte short int long float double char boolean

Wrappers: Byte Short Integer Long Float Double Character Boolean

(You’ve used these classes before: Integer.parseInt(), Double.parseDouble(), etc.)

Because of a Java process called autoboxing you can act as if the wrapper class is just the same as the
primitive type. Basically, if the compiler sees 5.6, it “boxes it up” into an instance of the Double class.:

ArrayList<Integer> b = new ArrayList<>();

 b.add(3);

b.add(-5);

b.add(33);

b.add(10);

sum = 0;

 for (Integer e : b)

 sum += e;

 System.out.println(sum);

ArrayLists for Multiple Association
ArrayList<E> objects can be used as instance variables, just like Arrays can.

Finally, you can implement the Kleene star (*) multiplicity. The * means “0 or more”, which is exactly
how many objects an ArrayList can contain!

 ArrayList<Bank> ArrayList<BankAccount>

banks accts

4. Mouse Events (Read pp. 729-732)
A mouse event is triggered every time one of the following things happens to a GUI component:

• A mouse button is pressed (MouseEvent.MOUSE_PRESSED)

• A mouse button is released (MouseEvent.MOUSE_RELEASED)

• The mouse moves (MouseEvent.MOUSE_MOVED)

• The mouse is dragged (MouseEvent.MOUSE_DRAGGED)

• The mouse enters the component (MouseEvent.MOUSE_ENTERED)

• The mouse leaves the component (MouseEvent.MOUSE_EXITED)

• Etc.

Usually, you don’t need to handle mouse events yourself. But when you’re making a program with a
Canvas (e.g. a game, a drawing app, an interactive graphic, etc.) it might be very nice to let the user

interact directly with the drawings on the canvas instead of having to fill in text fields and press buttons.

To add a mouse event handler for a button press to a canvas named c, include the following line in the
start method…

c.addEventHandler(MouseEvent.MOUSE_PRESSED, this::pressHandler);

• The first parameter specifies the event type using static constants defined in MouseEvent.

• The second parameter specifies the event handler method that should be called (just like the
Button method setOnAction()).

… then create the pressHandler method. This must be void, must accept a MouseEvent

parameter, and should probably be private.

 private void pressHandler(MouseEvent me) { ... }

Unlike ActionEvent objects for button event handlers, which can often be ignored, you will almost
certainly want to get some information from the MouseEvent object. At a minimum it can tell you

where the mouse was when the event happened, and what button was involved.

Here’s an example event handler that goes with the code above.

 private void pressHandler(MouseEvent me) {

 System.out.println("Pressed " + me.getButton() + " at (" +

 me.getX() + "," + me.getY() + ").");

 }

Get MouseEventDemo.java from Canvas for an example.

