
COMP10062: Week 2 Guide
Sam Scott, Mohawk College, 2021

0. Reading for this Week
For this week, you should read sections 3.1 to 3.4 and 4.1 to 4.3 (skip “The Conditional Operator” and
“The Exit Method” in 3.1, “Enumerations” in 3.3, “Dialog Box” in 3.4, “Using a Comma” in 4.1 and “The
For-Each Statement” in 4.1, “Assertion Checks” in 4.2).

This is probably the biggest chunk of reading you will be asked to do in one week, but keep in mind that
you already know how to use loops and if statements from Programming Fundamentals. These sections
are just teaching you what you already know, but in Java. You can probably skim over a lot of it.

1. Basic Flow of Control
a. The If Statement (pp. 141-165)

In Python
if x > 5:

 x = x / 2

 print(x)

elif x < 5:

 x = x * 2

 print (x)

else:

 print("error")

print("done")

In Java
if (x > 5) {

 x = x / 2;

 System.out.println(x);

} else if (x < 5) {

 X = x * 2;

 System.out.println(x);

} else

 System.out.println("error");

System.out.println("done");

Java Notes
Boolean expressions in (…)

Indenting is for readability

No elif.

You can use a code block (with
{…}) or a single statement

after an if or else.

Advice: ALWAYS USE { … }.

b. Boolean Expressions (pp. 148-153)

In Python
x = 5

good = False

if (x > 5 and x < 10) or

(x > 15 and x < 20):

 good = True

 print("in range")

if not good:

 x = 8

if x == "5":

 print("x is a string")

In Java
int x = 5;

boolean good = false;

if ((x > 5 && x < 10) ||

(x > 15 && x < 20)) {

 good = true;

 System.out.println("in range");

}

if (!good) {

 x = 8;

}

if (x == "5")

 System.out.println("x is a

string");

Java Notes

|| = OR
&& = AND
() around boolean
expressions

! = NOT

- syntax error!
Operands must be
compatible (i.e.
castable)

c. Comparing Strings – a Java “Gotcha” (pp. 153-158)

In Python

name = input()

if name == "Sam":

 print("Welcome!")

else:

 print("Go away!")

In Java
Scanner sc = new Scanner(System.in);

String name = sc.nextLine();

if (name.equals("Sam"))

 System.out.println("Welcome!");

else

 System.out.println("Go away!");

Notes
For Strings, using ==

will usually result in
false, even if the

contents are the
same. Use
s1.equals(s2).

(See Extra, Week 2 - Comparing Strings and sections 2.2 and 3.2 of the text for more.)

d. The While Loop (pp. 203-206, section 4.2)

In Python
count = 10

while count >= 1:

 print(count)

 count -= 1

print("blast off")

In Java
int count = 10;

while (count >= 1) {

 System.out.println(count);

 count -= 1;

}

System.out.println("blast off");

"ITACL”
Initialize loop variable

Test loop variable

Act

Change loop variable

Loop back to the top

More Notes
You can also use the break statement to exit a loop (see p. 238)

e. Variable Scope

In Python
count = 10

while count >= 1:

 show = count * 2

 print(show)

 count -= 1

print("blast off")

print(show)

In Java
int count = 10;

while (count >= 1) {

 int show = count * 2;

 System.out.println(show);

 count -= 1;

}

System.out.println("blast off");

System.out.println(show);

Notes

show is a local variable

Syntax error in Java

More Notes
Python has function scope: Variables introduced inside functions are local to that function
Java has block-level scope: All variables are local to the block in which they are declared

• The block might be a method declaration block

• Or it might be part of a while loop or if statement

• Nested blocks can access the variable, but code outside of the variable’s block cannot.

Quick Exercise
Paste the Java code from the example above into a main method and verify that it contains a syntax
error. Then fix the code so that the final print statement will work (don’t change the print statement,
change something else).

2. The For Loop (pp. 219-226, section 4.2)
While Loop
int x = 1;

while (x <= 10) {

 System.out.println(x);

 x++;

}

System.out.println("blast off");

For Loop

for(int x = 1; x <= 10; x++) {

 System.out.println(x);

}

System.out.println("blast off");

Notes
The for loop and while loop are almost equivalent.

The only difference above is that the scope of the x variable is restricted: Adding

System.out.println(x) as the last line of the For Loop example above would cause a syntax

error.

What is ++? Java contains two operators ++ and --. They are add or subtract 1 from a variable. They

are equivalent to the Python +=1 and -=1 respectively (both of which are also allowed in Java).

While Loop
Initialize

while (Test) {

 Act

 Change

}

For Loop

for(Initialize; Test; Change) {

 Act

}

Notes
The for loop is an “ITACL” loop, just like the while loop. It is
preferred by some programmer because it puts all the loop logic
(Initialize, Test and Change) into a header instead of spreading it
out in multiple places.

3. The Switch Statement (pp. 176-182)
If … else chain

if (choice == 1) {

 // do choice 1;

} else if (choice == 2)

{

 // do choice 2;

} else if (choice == 3)

{

 // do choice 3;

} else {

 // do default;

}

Switch statement
switch (choice) {

 case 1:

 // do choice 1

 break;

 case 2:

 // do choice 2

 break;

 case 3:

 // do choice 3

 break;

 default:

 // do default

}

Notes
Replaces an if … else chain, but only if
it is using simple == expressions and
only for primitive types. From Java 8
onwards, switch will also work for
Strings.

The break statement is not optional.
Leaving it out will cause multiple cases
to execute.

4. The Do…While Loop (pp. 206-211, section 4.2)
It’s “IACTL” Instead of “ITACL”
Initialize

do {

 Act

 Change

} (Test);

Example: Sentinel Controlled Loop
Scanner sc = new Scanner(System.in);

int input;

do {

 n = sc.nextInt();

 System.out.println(n*2);

} while (n > 0);

When to Use this Loop…
When you know you will always go through at least one
iteration. For example, when collecting user input.

