
COMP10062: Week 3 Guide
Sam Scott, Mohawk College, 2020

0.1 Reading for this Week
For this week, you should read sections 5.1 to 5.3 and Appendix 5.

0.2 What is Object Oriented Programming?
In your Python course, you engaged in procedural (aka “structured”) programming. In procedural
programming, you view a programming problem as a series of tasks. You break down the problem into
subtasks (procedures or functions) and then perform one subtask at a time. Below is an example of how
to view the classic game of Pong in a procedural way. Steps 1 through 7 could each be a function call.

Example: A simple Pong game
1. clear the screen
2. update ball position
3. update paddle positions (if user input)
4. draw the screen
5. detect ball collision (paddles, walls)
6. change ball direction (if necessary)
7. update score (if necessary)
8. go to step 1

In Java, you will usually engage in object-oriented programming. In object-oriented programming, you
view a programming problem in terms of the objects involved. You analyze the problem, decide what
different types of objects are involved, decide on what attributes each type has and decide what
behaviours each type exhibits. Then you write a blueprint called a class for each object type, create the
objects (instances of the class) from the main program and in some cases (like the Pong example) you
may even be able to exit the main method and let the objects interact with one another on their own.

The Pong example
1. create a ball object
2. create paddle objects
3. create a scoreboard object
4. create keyboard listener objects
5. create a screen updater object
6. relax and let the objects talk to each other

What is an Object?
Real-world object: An entity with attributes and behaviours (e.g. a car). An attribute is a property of the
object (e.g. color, transmission type, amount of gas in tank, etc.). A behaviour is something the object
does or that you can do with the object (e.g. start engine, accelerate, brake, etc.)

Java Object: A package of instance variables or fields (attributes) and instance methods (behaviours).
For example, a String object contains a list of characters (stored in an instance variable) and instance
methods such as length(), equals() and indexOf().

Java Class: A blueprint for creating a particular kind of object. Every Java Class you create becomes a
type that you can use to declare variables.

Note that these Pong
examples are highly
over-simplified.

1. Objects and Instance Variables (Sections 5.1 & 5.3)

a. Creating a Class
Java

public class Circle {
 double radius = 10.0;
 double x = 100.0;
 double y = 100.0;
}

UML Class Diagram

Notes
UML Class diagrams show the class name,
the names and types of the instance
variables, and the names and types of any
instance methods. This class has no
instance methods.

b. Creating Objects
Java

Circle c = new Circle();

Circle d = new Circle();
d.radius = 25.5;

Memory Diagram
c:

d:

Notes
Variables c and d contain
references (memory addresses)
that allow access to the objects
stored in RAM. The “.” operator
“dereferences” the variable to get
to the object.

System.out.println(c)
will show the memory address.

c. Assigning and Comparing Objects
Java

System.out.println(c==d)

c = d;
c.x = 0.0;
System.out.println(c.x);
System.out.println(d.x);

System.out.println(c==d)

Memory Diagram

c:

d:

Questions
Can you walk through the
changes to the diagram in part b
given the code in part c?

What will the output of this
program be?

Note
Objects with no active reference
are automatically disposed of by
Java’s “Garbage Collection”
mechanism.

radius: 10.0
x: 100.0
y: 100.0

radius: 25.5
x: 100.0
y: 100.0

radius: 10.0
x: 100.0
y: 100.0

radius: 25.5
x: 0.0
y: 100.0

2. Instance Methods (Sections 5.1 & 5.3)
In Python
def addup(a,b,c):
 d = a + b + c
 return d

print(addup(1,2,3))

In Java
int addup(int a, int b, int c) {
 int d = a + b + c;
 return d;
}

System.out.println(addup(1,2,3));

Notes
• A method is a function that is declared inside a class definition.
• In Java, all statements (except variable declarations) must be inside a method, and all methods

must be inside a class.
• When you run a Java class, the main method executes.
• The declaration above starts with the type of the method.

o This is the type of value that the method must return
o If you try to return the wrong type, you’ll get a syntax error
o The type can also be void, which means the method does not return anything

• Parameters and local variables must be declared using types
• When you call a method, arguments are matched to parameters by position

o No keyword or optional parameters like Python

In Procedural Programming
Functions perform a specific subtask.

- The subtask is related to the arguments.

Arguments provide all information necessary to
perform the subtask.

Return values communicate the result of the
subtask.

In Object Oriented Programming
Methods implement a specific behaviour of an object.

- The behaviour is related to the instance variables.

Arguments provide new information not already in the
object’s instance variables.

Return values send back information from the object. If a
behaviour changes an instance variable, we might not need
a return value at all.

Java
public class Circle2 {

 double radius = 10.0;
 double x = 100.0;
 double y = 100.0;

 double getArea() {
 return Math.PI * radius * radius;
 }

 void setLocation(double newX,
 double newY) {
 x = newX;
 y = newY;
 }

 void draw(GraphicsContext gc) {
 gc.setStroke(Color.BLACK);
 gc.setLineWidth(radius / 4);
 gc.strokeOval(x - radius,
 y – radius, radius * 2,
 radius * 2);
 }

 boolean equals(Circle2 other) {
 return (x == other.x &&
 y == other.y &&
 radius == other.radius);
 }
}

Diagram & Notes

getArea has no parameters because all the
information is already in the object. Returns
the result of its computation.

References to “radius” are references to the
instance variable defined above.

setLocation has parameters for the
information that represents the new
location.

draw requires a parameter so that it knows
where to draw.

equals works just like the String method.
Use it to determine if two different Circle
objects represent the same circle.

QUESTION: What would happen if this
method contained the statement
other.radius = 100? Draw a diagram
of the situation.

Note
The textbook (e.g. pages 272, 328, 342) shows a style of UML class diagram in which the parameter
types appear before the variable names instead of after them. This is not standard, so in this course we
will stick to the more standard UML style of paramName: paramType as shown above.

3. Encapsulation (Read Section 5.2)
It’s not always a good idea to let other programmers
access your instance variables directly:

1. They might change a variable to an illegal value
2. A change to a variable might have other effects

within the class.

We avoid this by encapsulating our variables.

To encapsulate means to make some instance
variables and methods inaccessible from outside a
class. Usually we make all instance variables private,
and we make most instance methods public.

Accessor methods (get methods) are a standard way to access a private instance variable.

Mutator methods (set methods) are a standard way to set the value of a private instance variable.

In UML class diagrams, “–” means private and “+” means public, as shown above.

See Circle3.java on Canvas for the code that matches this diagram.

• Notice that setRadius() and setLocation() check the values being passed to them and
issue warnings or errors. We wouldn’t be able to do that if radius, x and y were public.

• Notice that x and y are “write only”. You can change them with setLocation but you can’t
access their values. We also wouldn’t be able to do that if x and y were public.

The toString Method
Circle3.java contains a special toString() method. This method returns a String representation of
an object for debugging purposes. Usually, the String contains the class name, plus the values of all
the instance variables, like this:

 Circle3: radius 50.0, location (200.0, 150.0)

toString() is a kind of “magic” method. It will automatically be called whenever you print or
concatenate your variable. So you never have to actually call toString(). The system does it for you.

 System.out.println(circle); will print circle.toString()

 String s = "my circle: "+circle; will concatenate circle.toString()

(Of course, there’s nothing really magic about toString(). We’ll explain in a later class how this
method is really getting called.)

IntellJ Tip: ALT-INSERT will bring up a menu
that lets you create get, set, and toString
methods automatically. They will be very basic,
so you may have to tweak them to make them
do what you want.

The Rectangle Example
Adapted from Listing 5.9 of the textbook…

Java
public class Rectangle {
 private int width;
 private int height;
 private int area;

 public void setDimension(int width,
 int height) {
 this.width = width;
 this.height = height;
 area = width * height;
 }

 public int getArea() {
 return area;
 }
}

Questions and Notes
What could happen in this
implementation if width, height and
area were not private?

The this keyword is a “magic”
variable that is always present in an
instance method and holds the current
instance (the one that the method was
called on).

Why is the code using the this
keyword? Is there a different way to
write the code that would make the
this keyword unnecessary?

4. Interface vs. Implementation (Read pp. 324-327)
Interface
The interface of a class is its public instance variables + public method headers + JavaDoc comments.

The interface, or API (Application Programming Interface) tells the programmer everything they need to
know to use your class.

Implementation
The implementation of a class is its private stuff + method bodies + comments inside methods.

The programmer should not have to know any of this in order to use your class.

Two Big Advantages
1. Ease of use. Imagine if you had to understand how Scanner works before you could use it!
2. Change of Implementation. If you keep the interface constant, you can make radical changes to

the implementation of your class without breaking anybody else’s code.

The Rectangle Example Again
Adapted from Listing 5.10 of the textbook…

Java
public class Rectangle {
 private int width;
 private int height;

 public void setDimension(int width,
 int height) {
 this.width = width;
 this.height = height;
 }

 public int getArea() {
 return width*height;
 }
}

Questions and Notes
What is different about this
implementation compared to the last
one?

Can you think of any reason to prefer
this implementation over the other or
vice versa?

Would this change of implementation
make any difference to a programmer
who was using the Rectangle class?

Documenting your Interface (Appendix 5)
In Java, your interface must be documented in JavaDoc format. See Documentation Standards on
Canvas or Appendix 5 of the textbook for full info. Every method gets a short description. Every
parameter and return value gets a short description with @param and @return. Every class gets a
short description and must have an @author tag.

You can use the JavaDoc compiler (from the Tools menu on IntelliJ) to generate HTML from your
JavaDoc. Feel free to embed HTML tags to make the result look nicer.

EXTRA: Partial Class Diagrams for Common Classes
Diagrams like these will be made available on your tests. More to come later!

	0.1 Reading for this Week
	0.2 What is Object Oriented Programming?
	Example: A simple Pong game
	The Pong example
	What is an Object?

	1. Objects and Instance Variables (Sections 5.1 & 5.3)
	a. Creating a Class
	b. Creating Objects
	c. Assigning and Comparing Objects

	UML Class Diagram
	Java
	Notes
	Memory Diagram
	Java
	Questions
	Memory Diagram
	Java
	Note
	2. Instance Methods (Sections 5.1 & 5.3)
	Notes
	Note

	3. Encapsulation (Read Section 5.2)
	The toString Method
	The Rectangle Example

	4. Interface vs. Implementation (Read pp. 324-327)
	Interface
	Implementation
	Two Big Advantages
	The Rectangle Example Again
	Documenting your Interface (Appendix 5)

	EXTRA: Partial Class Diagrams for Common Classes

