
COMP10062: Week 7 Guide
Sam Scott, Mohawk College, 2022

0 Reading for this Week
For this week, all you really need is this guide, but you could look over sections 5.4 (GraphicsContext
and Labels), 6.8 (Buttons), pp. 555-557 of section 7.6 (TextFields), and p. 649 of section 8.6 (Event
Driven Programming). Now that you know about arrays, you might also be interested in pp. 560-563 of
section 7.6 on drawing Polygons.

1. Placing GUI Components
In this tutorial, you will create the layout for the “Hello” app shown below. This Graphical User Interface
(GUI) contains 4 elements: A label, two text fields and a button.

a. Download FXGUITemplate.Java,
change the name of the class, and
make sure it runs.

b. Go to the start menu and set the
size and title of the window.

c. Under the comment that says “2. Create the GUI components”, create two new text fields, a
button, and a label. Here’s an example of how to create a text field with some default content.
See Appendix C at the end of this document for more.

TextField field1 = new TextField("Your Name Here");

d. Under the comment that says “3. Add components to the root”, use a line like this one to add all
your components to the display:

root.getChildren().addAll(f1, f2, b, lbl);

Now run the app. The elements will be placed on top of each
other, something like the picture at right.

e. Under the comment that says “4. Configure the components”,
set the top left corner of each component using relocate(). Set the sizes with
setPrefWidth(), setPrefHeight(), or setPrefSize(). Set the fonts with
setFont(). Finally, you can set colors and other configurations with setStyle(). The
setStyle() method uses CSS-style property-value pairs to configure colors, borders, etc.

Here’s an example of how to configure a label stored in a variable named “output”.

output.relocate(0, 0);

 output.setPrefWidth(600);

output.setFont(new Font("System", 20));

output.setStyle("-fx-background-color: lightblue;-fx-text-

fill:darkblue;");

 Note that the CSS properties are not standard. See Appendix C.

2. Event Handlers
In this tutorial, you will give the “Hello” app some functionality by adding event handlers.

a. Create a private event handler method under the “TODO: Private Event Handlers” comment.
This method will eventually be called whenever the button is pressed. (The button press is the
event, the method handles the event.) Event handler methods must be void and must accept a
single parameter of type ActionEvent.

private void myHandler(ActionEvent e) {

 System.out.println("Button Pressed!");

}

b. Now register this method as an event handler with the setOnAction method of the button,
as shown below. Do this under the “5. Add Listeners and do final setup” comment. Then run the
app and press the button. Did it work?1

myButton.setOnAction(this::myHandler);

Now change the method so that it reads the two text fields and uses them to change the label.
It’s easy to get the text from a TextField and set the text on a Label using their

getText() and setText() methods. But you have to have access to these components
first. This means we need to store the text fields and the label in instance variables.

c. Under “TODO: Instance Variables for View Components” comment, create private instance
variables for two text fields and a label, something like this:

TextField nameField, numField;

 Label output;

Then in the start() method, where you created, configured and placed the text fields, use

these instance variables instead of the local variables you were previously using. Now you have
a persistent handle on all these components.

d. Back in the event handler method, use nameField.getText() and output.setText()
to say “Hello ____” where the blank is the name the user filled in.

e. Last step is to repeat the hello message n times, where n is the integer in the second text field.
This can be done by concatenating repeatedly in a loop. But when you use getText() you get
a String, not an int. Fortunately, there’s a method in the Integer class to convert:

int n = Integer.parseInt(numField.getText());

This method throws an exception if it gets a bad value, but it your program won’t crash.

See HelloWorldGUI.java on Canvas for a version of the finished product.

1 The syntax a::b is used to refer to method b from object a. This is a new piece of “syntactic sugar” added in

Java 8. In the background, Java unpacks this expression into something called an “anonymous inner class” that
implements an “interface” and calls the method you named.

3. Model vs. View
It’s often useful to think of a GUI as the user’s view of an object known
as the model. Buttons can correspond to methods, labels can be used to
display return values from methods, and text fields can correspond to
parameters you would pass to the methods. In this tutorial we’ll put a
GUI view onto a model we’ve seen before: Circle4.java. You can get this
class from Canvas.

a. Create an app from the FXGUITemplate that looks something
like the one on the right. The four components are a Canvas, a
TextField, a Button and a Label. The button has an event

handler attached to it.

A Canvas is a blank component that you can draw on. You create it like this:

 Canvas c = new Canvas(width, height);

To draw on it, you get its GraphicsContext, like this:

 GraphicsContext gc = c.getGraphicsContext2D();

Don’t worry about making your GUI look exactly like the picture above. Just make sure you can
see all the components and that the event handler is hooked up properly. Remember to store
some of these components in instance variables so that you can access them from the handler.

b. In the instance variables section, declare a variable to hold the model. In this case, the model
object is of type Circle4.

c. Under the comment “1. Create the model”, create a new Circle4 object, something like this:

model = new Circle4(50, 80, 50);

d. It would be useful at this point to create a private helper method called “refresh” or something
like that. The job of this method is to update the view to match the model. In this case, that
means clear and draw the circle on the GraphicsContext of the Canvas, then update the
Label text using Circle4’s toString() method.

When the method is written, call it under the “5. Add Listeners and do final setup” comment.

Try this yourself, but the finished code is in CircleManager.java on Canvas.

e. Now update the event handler so that it reads the new radius from the text field (use
Double.parseDouble() to convert it), calls the setRadius() method of the Circle4
object, and then calls the refresh method to redraw everything.

If you feel like it, you could also call the requestFocus() method of the TextField so
that the cursor returns to this field after the button is pressed.

Congratulations! You just made your first two-class GUI app, separating the view from the model. See
Appendix A and Appendix B for a discussion what you just did.

Appendix A: CircleManager Class diagram
This is the class diagram for the CircleManager.java app on Canvas. Notice that this is an association
relationship between a “view” class and a “model” class.

Your implementation might not look exactly like this one.

Appendix B: Event-Driven Programming
GUI programming is always event driven. This is a little bit different from the style of programming
you’re used to.

What’s Different about Event-Driven Programming?
Most apps have been completely under the control of a single method – main, start, animate, etc. Once
that method terminates, the app is basically finished.

Even-driven apps have a main or start method that sets things up (i.e. creates the view components and
the model) but these programs continue to run after the main or start method terminates.

How Does it Work?
When the program runs, an “event handler” process starts up in the background. This process is
basically an infinite loop that is constantly checking with the operating system to see if any new events
have happened (e.g. a button is pressed, a key is typed, the mouse is moved, the window is closed, etc.).
If it detects an event, it decides what to do about it.

If you have registered an event handler method for an event, the event handler will call that method
when it detects that the event has occurred. The event handler waits for the method to finish, and then
continues its infinite loop.

Gotcha: Hijacking the Event Handler
Event handlers should generally do one quick job and then exit. If they pause for too long, it will prevent
the event handler from processing future events, and the window will appear to hang. Run Hijack.java
to see an example of this.

circle

Appendix C: GUI Components Reference
On the right is a very simplified class
diagram for Label, Button,
TextField and Canvas.

The arrows show how these classes
“inherit” some of their methods from
other classes.

For example, the Canvas class has the
methods listed under Canvas, plus all

the methods from Node. The other three
component classes have their own
methods plus all those from Node and
from Labeled /

TextInputControl / Region.

setGraphic()
This method lets you put images on
buttons and labels, but it wasn’t covered
in the tutorials. Look at section 6.8 of the
text to see how it works.

CSS Styles
The CSS styles for FX are all different from
the standard web page styles, and the
reference documentation is not easy to
read. Here are the two you will probably
need most often:

-fx-background-color

-fx-text-fill

For other possibilities, go to https://wheelercode.wordpress.com/javafx-css-properties-selectors-list/ or
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

Setting an Event Handler on a Button
myButton.setOnAction(this::myHandler); set the handler

private void myHandler(ActionEvent e) {} signature for the handler

Helpful Static Methods
Integer.parseInt(String): int convert String to int
Double.parseDouble(String): double convert String to double
String.format(String, arguments…): String format a string nicely

https://wheelercode.wordpress.com/javafx-css-properties-selectors-list/
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html

