
COMP10062: Week 8 Guide
Sam Scott, Mohawk College, 2020

0 Reading for this Week
For this week, you should read sections 8.1 and 8.2.

1. Inheritance (Read section 8.1, pp. 586-592)
Inheritance is the second important relationship between classes. Like association, inheritance mirrors
an important way in which human beings understand and organize knowledge of the world.

For example:

• A bird has a beak.
o This is an association between the concepts BIRD and BEAK.

• A bird is an animal.
o This is an inheritance relationship between the concepts BIRD and ANIMAL. Birds are a kind of

animal. They are a subclass of the class of animals.
• An animal eats.

o This is a property of the concept ANIMAL.
o Because animals eat, birds also eat. This property is INHERITED.

Inheritance is a powerful tool. If I tell you that a wug is a kind of bird, you can immediately tell me a lot
about wugs. You know that they have beaks, that they are animals, that they eat, and lots more. This
information is all inherited from the BIRD and ANIMAL concepts.

In computer science, we can set up inheritance relationships between classes to eliminate code
duplication and modularize our code even further.

P.S. “Wug” comes from Jean Burko Gleason’s “wug test”, a famous study in linguistics to investigate
how children acquire the rules of language. https://en.wikipedia.org/wiki/Jean_Berko_Gleason

https://en.wikipedia.org/wiki/Jean_Berko_Gleason

Java Inheritance Example
The code that matches this class diagram is on
Canvas. Run the Draw.java class to see it in
action.

Compare to the “BeforeInheritance”
versions of these classes, also posted on Canvas.

Notice all the duplicated code.

Inheritance reduces code duplication.

• A Circle is a Geometric object. A
Rectangle is a GeometricObject.

• The Circle class extends the
GeometricObject class. It is a child class
or a subclass.

• GeometricObject is the parent or
superclass or base class.

• A Circle object contains all
methods and fields (instance
variables) in the Circle and
GeometricObject classes.

• But Circle class methods only
have access to public members of
GeometricObject.

• So subclasses have to use getters
and setters to access x, y,
lineWidth, etc.

• The toString() methods in Circle and Rectangle override the toString() method in
GeometricObject. Note the use of the optional @override tag in the code.

Issues…
In Circle and Rectangle, it would be great to call the toString() method from
GeometricObject, to output the private variables stored there. See section 2 below.

Why do none of these classes have constructors? Because constructors are more complicated and are
not inherited. We’ll add constructors in section 3 below.

Triangular arrow head
means “is a” or “extends”

2. Overriding Methods (Read Section 8.1, pp. 592-598)
Overriding and overloading are two different ways in which an object
could contain two methods of the same name.

Overriding = exact same method signature in a superclass and a subclass.

Overloading = methods with different signatures in the same class or
split between superclass and subclass.

Quick Exercises
Consider the UML diagram on the right.

1. Which of the methods named foo in the UML diagram on the
right could be considered overrides? Which are better thought
of as overloads? Which could be considered both?

2. Consider the following code:

Child c = new Child();
Parent p = new Parent();
Grandparent g = new Grandparent();

How many methods with the name “foo” does each of the objects c, p and g contain? Which
ones can you call from object g?

3. For each line of code below, indicate on the UML diagram which method will get called. Watch
out – some of these might be syntax errors!

1. c.foo(1);
2. c.foo(1, 2);
3. c.foo(1, 2, 3);
4. p.foo(4);
5. p.foo(4, 5);
6. p.foo(4, 5, 6);
7. g.foo(7);
8. g.foo(7, 8);
9. g.foo(7, 8, 9);

Run the OverrideTests.java app to see if you are right.

The super Keyword
If you want to force a call to a method from a superclass, you can use the super keyword.

The super keyword is a bit like the this keyword, but it forces Java to call the version of the method
in the superclass instead of in the current class.

this.foo() will call the foo() method accessible to the current class.

super.foo() will call the foo() method accessible to the superclass of the current class.

3. Constructors and Inheritance (Read section 8.2, pp. 599-611)
Consider the UML class diagram on the right. Make sure you
understand it and that you can identify the constructors for each class.
The code for these classes is on Canvas.

Important Reminders
• Constructors are called once when an object is created and

never again for that object.
• If you don’t write a constructor, a default constructor is

supplied that has no parameters and does nothing.

Constructor Inheritance
• Constructors are not inherited.
• When an object is created, one constructor will be called for

every class in its inheritance hierarchy.
• By default, Java will call the constructor you asked for, and

then the no-argument constructor for every superclass.

Run FooBarTest.java on Canvas to see which constructors get called
when you invoke either of the FooBar constructors.

Notice that the y and z values don’t get set properly in all cases. We’ll
resolve that in a moment.

Quick Exercise
What will happen if you remove the no-argument constructor from FooBarGrandma or FooBarMama?

Try commenting one of them out in IntelliJ and saving the class. What happens? Can you explain it?

The super Keyword
A constructor is typically used to set the values of all or most instance variables. FooBar has a 3-
argument constructor because a FooBar object has 3 instance variables (what are they?). But right
now, this constructor only sets the value for x because it doesn’t have access to the other two (why
not?). The obvious thing to do is to call the FooBarMama constructor to set the other two.

• Recall: The this() keyword can be used as the first line of a constructor to call another
constructor from the same class.

• Similarly, the super() keyword can be used to call a constructor from the superclass.

If you don’t include an explicit call to a superclass constructor, Java inserts super(); for you.

Quick Exercise
Use the super keyword to fix FooBar and FooBarMama so that all instance variables get set when
the constructors that take arguments get called.

Golden Rule of Constructor Initialization
Initial values for instance variables should be set by constructors in the same class.

4. The Object Class (Read Section 8.2, pp. 612-616)
Every class that does not have an “extends” clause in its definition
extends Object by default.

This means that every class is a descendent of the Object class.
(Why?)

The Object class contains a few generic methods, such as:

 .equals(Object 0)
 .toString()

Now it all makes sense!
This is why you can print every object even without a toString()
method.

• System.out.println() accepts an argument of type
Object, then calls its toString() method. If the object’s
base class doesn’t have a that method, it uses the one
inherited from Object.

• A parameter of type Object can accept anything because
every object of any class type is also an object of the Object
type (more on this next week when we cover Polymorphism).

And it’s why you can concatenate every object.

• The concatenation operator (+) also accepts an argument of
type Object and calls its toString() method.

And it’s why IntelliJ always includes an @Override tag when it generates a toString() method.

Finally, this also explains why the setText() method of Label and the fillText() method of
GraphicsContext don’t work for every object.

• These methods require String parameters. So you have to actually call toString() on your
object if you want to use it in these methods.

And you probably didn’t know this, but you can also always use .equals() to compare two objects,
even if you don’t define an equals() method – for the same reason that you can always use
.toString(). The inherited equals() method just uses == to compare the two objects. (Will it
ever return true?)

	0 Reading for this Week
	1. Inheritance (Read section 8.1, pp. 586-592)
	Java Inheritance Example
	Issues…

	2. Overriding Methods (Read Section 8.1, pp. 592-598)
	Quick Exercises
	The super Keyword

	3. Constructors and Inheritance (Read section 8.2, pp. 599-611)
	Important Reminders
	Constructor Inheritance
	Quick Exercise
	The super Keyword
	Quick Exercise
	Golden Rule of Constructor Initialization

	4. The Object Class (Read Section 8.2, pp. 612-616)
	Now it all makes sense!

