
Original Partner

SOLUTION

Student #

Obstacle

6
COMP
10062

Paired Partner (“grader”)

Student #

Inheritance

SCORE OBTAINED

5

1

public class ClassA {
 private static int num;
}

public class ClassB {
 ClassA a, b;
}

1a) What kind of a relationship are ClassA and ClassB in?
ASSOCIATION i.e. a “has a” relationship

type of relationship

1b) Draw the UMLs (with the correct arrow) which describes the
two classes.

2
public class ClassA { }

public class ClassB extends ClassA { }

2a) What kind of a relationship are ClassA and ClassB in?
Inheritance, i.e. a “is a” relationship

type of relationship

2b) Draw just the connecting arrow between these two UMLs.

3 Provide a small example of OVERRIDING and one of OVERLOADING methods

//OVERRIDING EXAMPLE

class Animal {
 void makeSound() {
 System.out.println("Animal makes a sound");
 }
}

class Dog extends Animal {
 @Override
 void makeSound() {
 System.out.println("Dog barks");
 }
}

In Java inheritance, overriding refers to the
capability of a subclass to provide a specific
implementation of a method that is already defined
in its superclass. When a subclass provides its own
implementation of a method that is already present
in its superclass, it is said to be overriding that
method.

//OVERLOADING EXAMPLE….SHOWING 4 OVERLOADS for makeSound
class Animal {

 void makeSound() {

 System.out.println("Animal makes a

sound");

 }

 void makeSound(String sound) {

 System.out.println("Animal makes a " +

sound);

 }

}

class Dog extends Animal {

 @Override

 void makeSound() {

 System.out.println("Dog barks");

 }

 void makeSound(int numBarks) {

 for (int i = 0; i < numBarks; i++) {

 System.out.println("Dog barks");

 }

 }

}

public class Main {

 public static void main(String[] args) {

 Animal animal = new Animal();

 animal.makeSound(); // Output: Animal

makes a sound

 animal.makeSound("loud noise"); //

Output: Animal makes a loud noise

 Dog dog = new Dog();

 dog.makeSound(); // Output: Dog barks

 dog.makeSound(3); // Output: Dog barks

Dog barks Dog barks

 }

}

 In Java, method overloading refers to the capability of
defining multiple methods in the same class or in a parent
class with the same name but different parameter lists. That
is, overloaded methods have the different method
signatures.

1. Same Method Name: Overloaded methods have the
same name within the class.

2. Different Parameter Lists: Overloaded methods
must have different parameter lists, which can vary
in terms of the number of parameters, their types, or
their order.

3. Return Type: Overloaded methods can have the
same or different return types.

)

4
Declare a 1000 element array of Dice. Then,
roll each die once.
Output only the current face on the 5th die of
the array.

Die[] d = new Die[1000];
for(int i=0; i< d.length; i++) {
 d[i] = new Die();
 d[i].roll();
}

System.out.println(d[4].getCurrentFace());

