
COMP10062: Assignment 2  
© Sam Scott, Mohawk College, 2021 

The Assignment: The World of “ChickenCraft” 
This assignment is about objects, instance variables, methods and encapsulation. You will 
create two classes to simulate the world of “ChickenCraft” – a simple game world loosely based 
on MineCraft Chicken objects.  

In graphical applications, programmers often separate the model from the view. The model 
keeps track of the internal state of the program, and the view is in the middle between the user 
and the model. It talks to the user through a user interface, and it talks to the model by calling 
its methods and interpreting the return values from those methods. The model never talks 
directly to the user. 

This is not a graphical application. In this assignment, the Chicken class is the model and the 
ChickenCraft class implements a “view” that consists of a text-based conversation with the 
user. If you implement the model well, it should be easy to re-use it later in a graphical view.  

                            

  MODEL            VIEW                    USERS 

Step 1: Design and UML 
Your first step should be to create a UML class diagram to represent a Chicken. You can create 
this diagram using UML software like UMLet or draw.io (links on Canvas). Please don’t use a 
plain word processor like Microsoft Word. If you want to use a different piece of software, you 
must check with the instructor first. 

• A Chicken can be happy or unhappy, and it can be alive or dead. A Chicken has a name, a 
certain number of “hearts” that represent its health, and a certain amount of seed in its 
stomach, in kilograms.  

• You can feed a chicken some seed. Is hearts go up by 1 (maximum 4) every time you 
feed it. But don’t feed it too much! A chicken with more than 2 kg of seed in its stomach 
will die.  

• You can give a Chicken a different Chicken to play with. This makes both Chickens happy  

• You can hit a Chicken and make its hearts go down by 1 (minimum 0). Hitting a Chicken 
always makes it unhappy and sometimes makes it dead (if it has 0 hearts).  

method Calls 

return values output devices 

input devices 



• You can get eggs from a Chicken – you get one egg for every 0.25 kg of seed in its 
stomach (and the seeds used are gone from its stomach afterwards). If the Chicken is 
happy, you get twice as many eggs. But laying eggs makes a Chicken unhappy.  

• Dead Chicken can’t be fed, can’t lay eggs, and can’t play with other Chickens. 

• When a Chicken is “born” (i.e. created) it alive and happy and has 4 hearts. By default, 
its name is “Nancy” and it has 0.1kg of seed, but you can change its name and the 
amount of seed it has after you create the chicken. 

There should be a toString method that returns a full report on a Chicken. It is completely up to 
you what the return value of toString looks like, but don’t just use the default from IntelliJ.  

 

Step 2: Implement the Chicken and ChickenCraft Classes 
Once the class diagram is finished, implement your Chicken class in Java code. Then write a 
main method in a different class to simulate a user interacting with the Chickens in the world of 
ChickenCraft. This method should create three Chicken objects and allow a user to interact with 
each one using a menu interface. It’s up to you how you structure the dialog, but one 
possibility is shown in the example dialog below. 

 

1. Happy DEAD Chicken Syd: 2.1kg seeds, 4 hearts,  

2. Happy Chicken Nancy: 0.6kg seeds, 4 hearts,  

3. Happy Chicken Johnette: 1.0kg seeds, 4 hearts,  

 

1. Feed 2. Play 3. Hit 4. Get Eggs 5. Quit 

Choice: 4 

Which chicken? 3 

You got 8 eggs. 

 

1. Happy Chicken Syd: 0.1kg seeds, 4 hearts,  

2. Happy Chicken Nancy: 0.6kg seeds, 4 hearts,  

3. Sad Chicken Johnette: 0.0kg seeds, 4 hearts,  

 

1. Feed 2. Play 3. Hit 4. Get Eggs 5. Quit 

Choice: 3 

Which chicken? 2 

Ouch! 

 

1. Happy Chicken Syd: 0.1kg seeds, 4 hearts,  

2. Sad Chicken Nancy: 0.6kg seeds, 3 hearts,  

3. Sad Chicken Johnette: 0.0kg seeds, 4 hearts,  

 

1. Feed 2. Play 3. Hit 4. Get Eggs 5. Quit 

Choice: 4 

Which chicken? 2 

You got 2 eggs. 

IMPORTANT BASIC RULE #1: The Chicken class is the model. The model should never talk to 
the user. It should do no input and produce no output.  

 



 

Error Handling 
If the user makes a mistake (feeds a bad amount of seeds, asks a chicken to play with a dead 
chicken, etc.) this should be reported to the user. But remember, the ChickenCraft class does 
not implement any logic to decide what happened, and the Chicken class is not allowed to use 
System.out. 

 

 

Encapsulation and Documentation  
Make sure you encapsulate your instance variables. Only allow access through methods, using 
get and set method naming if appropriate. Don’t forget the toString method, make sure you 
follow the Documentation Standards posted on Canvas. 

Handing In 
See the due date and time on the Canvas assignment. Hand in by attaching a zipped file of your 
two .java (not .class) files and your class diagram to the drop box. 

Evaluation 
Your assignment will be evaluated for performance (20%), class diagram (20%), structure (40%), 
and documentation (20%) using the rubric in the drop box. 

IMPORTANT BASIC RULE #2: The main method is the view. It talks to the user, calls the 
appropriate Chicken methods in response to the user’s input, and displays the results. It 
does not determine the results of a user’s actions or keep track of anything. That’s the job 
of the Chicken objects.  

 

Extra challenge: Implement your code in the animate method of the 
FXAnimationTemplate instead of in a main method. You will still get input from the 

user in the console, but you can show the Chickens on the canvas. See 
GraphicsExampleForAssignment2.java for an example of this way of using 

animate. 


